Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number

نویسنده

  • A. Nourbakhsh
چکیده

A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the centerline (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the centerline. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow. Keywords—Suspensions, Poiseuille flow, Effective viscosity, Reynolds number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Study of Drop Motion in Poiseuille Flow

The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...

متن کامل

A Numerical Study of Drop Motion in Poiseuille Flow

The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...

متن کامل

A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN MICROCHANNELS (RESEARCH NOTE)

Three-dimensional simulations of the single-phase laminar flow and forced convective heat transfer of water in microchannels with small rectangular sections having specific hydraulic diameters and distinct geometric configurations were investigated numerically. The numerical results indicated that the laminar heat transfer was to be dependent upon the aspect ratio and the ratio of the hydraulic...

متن کامل

Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model

Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...

متن کامل

Numerical Simulation of the Motion of a Drop in Plane Poiseuille Flow: Density Ratio Effects

Morteza Bayareh Department of Mechanical Engineering, Young researchers Club, Lamerd Branch, Islamic Azad University, Lamerd, Iran Abstract The density ratio effects on the motion of a three-dimensional drop in Poiseuille flow are examined at finite Reynolds numbers using a finite difference front tracking method. The elliptic pressure equation is solved by a multi-grid method. For deformable d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014